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Abstract

Non-native species can become deleterious or potentially beneficial as components of

novel ecosystems. The non-native red macroalga Gracilaria vermiculophylla may provide

nursery habitat where eelgrass Zostera marina has been extirpated in Chesapeake Bay. A

mensurative experiment was conducted monthly May–October 2013 and 2014 in the York

River, Chesapeake Bay, to evaluate hypotheses that Gracilaria (1) can compensate for the

loss of seagrass nurseries by colonizing habitats where seagrass has been eliminated by

environmental stress, and (2) is utilized by juvenile blue crabs (Callinectes sapidus) as nurs-

ery habitat. We quantified Gracilaria presence, percent cover, and biomass as a function of

region (upriver, midriver, and downriver) and seagrass presence or absence using stratified

random sampling, 20-m transects, and 0.0625-m2 quadrats. Gracilaria volume was mea-

sured and converted to dry weight. Effects of the factors and covariates temperature, salin-

ity, dissolved oxygen, month, and year were analyzed using generalized linear models.

Juvenile blue crab density was quantified in summer 2013 using suction sampling in Graci-

laria and seagrass. A model with the collective effect of region and seagrass presence or

absence (downriver seagrass, downriver unvegetated bottom, midriver unvegetated bot-

tom) best predicted Gracilaria abundance. Gracilaria presence, percent cover, and biomass

were highest in downriver seagrass, followed by downriver unvegetated bottom, and then

midriver unvegetated bottom, where seagrass has been extirpated, supporting hypothesis

(1). Gracilaria did not occur upriver, likely due to a lack of recruitment. Seagrass and Graci-

laria housed similar densities of juvenile blue crabs, supporting hypothesis (2). We esti-

mated that a single 40-ha cove system with Gracilaria could house 200,000 juvenile crabs

as would a single 2.4-ha seagrass bed. Consequently, the numerous midriver and downriver

cove systems in the York River could support millions of young juvenile blue crabs and

thereby compensate for the loss of seagrass in the river and in other areas of Chesapeake

Bay. At present, Gracilaria has no widespread negative impacts on seagrass in the York

River or most regions of Chesapeake Bay, likely because percent cover and biomass are

not excessively high at present. We posit that Gracilaria has become an important
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alternative nursery habitat for the blue crab in Chesapeake Bay and can potentially mitigate

impacts of climate change on seagrass nursery habitats.

Introduction

Coastal and estuarine systems are often the most degraded systems worldwide due to increased

human activity along coastlines [1, 2], which renders these systems susceptible to colonization

by non-native species [3], which are often harmful to the ecosystems they colonize, both eco-

logically and economically [4–6]. However, non-native species may benefit degraded systems

by restoring lost functions [7]. For instance, the green crab Carcinus maenas has facilitated salt

marsh recovery in some areas where it is not native by reducing consumption of cordgrass by

native species [8]. Introduced plants can increase structural heterogeneity and provide novel

habitat that can profit native species [9]. For example, the green alga Codium fragile sp. tomen-
tosoides increased recruitment of native Mediterranean mussels (Mytilus galloprovincialis) in

the Adriatic Sea [10]. In previously unvegetated intertidal flats along the southeastern Atlantic

Coast of North America, the red macroalga Gracilaria vermiculophylla (synonym Agarophyton
vermiculophyllum) attracted epifaunal colonizers by adding structure when facilitated by the

polychaete Diopatra cuprea [11–13], increased epifaunal abundance and richness [14], and

provided similar detrital habitat as native smooth cordgrass Spartina alterniflora wrack for

invertebrates [15]. In Europe, G. vermiculophylla increased epifaunal species richness when

entangled in seagrass beds (eelgrass Zostera marina) in Denmark [16] and increased macro-

faunal richness and both macrofaunal and meiofaunal density in intertidal mudflats in France

[17]. Thus, introduced macroalgae can enhance both unvegetated and native seagrass habitats.

Globally, seagrasses are in decline [18], and the fauna that use seagrasses as nursery habitats

are thus threatened [19]. While seagrass habitats are susceptible to disturbances, both natural

and anthropogenic, eutrophication is one of the primary causes of seagrass decline, which has

led to macroalgal blooms worldwide [20, 21]. When seagrass beds deteriorate, the resultant

unvegetated substrate can then be colonized by macroalgae [22], which may fill some of the

ecological roles of seagrasses [23].

In lower Chesapeake Bay, eelgrass Zostera marina is the dominant seagrass on shallow

shoals, and, along with widgeon grass Ruppia maritima, provides resources and protection to

early life history stages of many animals including the blue crab Callinectes sapidus [24–28].

However, seagrasses have been in decline in Chesapeake Bay since the 1930s; historical

declines were due largely to disease and storms [18, 29], while decreased water quality caused

by anthropogenic nutrient and sediment inputs is the primary driver of more recent declines

[30]. Increased fragmentation and decreased areal cover of seagrass beds may significantly

lower recruitment of blue crab and other species that use seagrass as primary nursery habitat

[26, 31, 32].

Similar to what has occurred in marine ecosystems worldwide [23], macroalgae may pro-

vide nursery habitat for blue crabs [33], other invertebrates, and fish, and thereby compensate

for the loss of seagrasses. Gracilaria vermiculophylla (herein Gracilaria) is a non-native,

coarsely branching, red macroalga originating from the Western Pacific [34] and which has

colonized shallow coastal areas of the Atlantic Ocean along North America and Europe [12,

35–39]. Species within the family Gracilariaceae are often morphologically similar and difficult

to differentiate [16, 40, 41]. In Chesapeake Bay and the seaside lagoons of Virginia and Mary-

land, the initial introduction and subsequent spread of Gracilaria was overlooked due to its

PLOS ONE Non-native red alga compensates as blue crab nursery habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0267880 May 31, 2022 2 / 23

2/). The funder had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript. RL received the

National Oceanic and Atmospheric Administration,

Chesapeake Bay Office (grant #

NA13NMF4570205) (https://www.fisheries.noaa.

gov/grant/noaa-chesapeake-bay-fisheries-

research-program). The funder had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0267880
https://vaseagrant.org/fellowship-research-funding/fellowships/research-fellowships/virginia-sea-grant-graduate-research-fellowships-2/
https://www.fisheries.noaa.gov/grant/noaa-chesapeake-bay-fisheries-research-program
https://www.fisheries.noaa.gov/grant/noaa-chesapeake-bay-fisheries-research-program
https://www.fisheries.noaa.gov/grant/noaa-chesapeake-bay-fisheries-research-program


cryptic morphological characteristics [18, 37, 42]. Although Gracilaria was first identified in

Chesapeake Bay in 1998 via genetic barcoding [36], it is likely that the alga was introduced

much earlier with the non-native oyster Crassostrea gigas as a source vector [43]. The alga has

become ubiquitous in shallow areas and coves in the tributaries of Chesapeake Bay and seaside

lagoons [20, 21, 37] and ranges along the east coast of North America from Georgia [12] to

New Hampshire [44].

Gracilaria may act as a nursery habitat by providing both refuge from predation and

increased food resources. Survival of juvenile blue crabs is enhanced in Gracilaria compared to

both seagrass and unvegetated substrate [33]. Unattached algae also modify soft-bottom habi-

tat [12, 16, 45–47] and can change the structure of associated communities by altering the

physical, chemical, and biological processes within those habitats. At intermediate levels of

algal biomass, this coarsely branching macroalga creates structural heterogeneity in colonized

soft-bottom habitats, and may also provide new habitats and food resources for other organ-

isms [12, 16, 38]. Thus, local species diversity may be enhanced by Gracilaria [48]. Drifting,

unattached Gracilaria can also become entangled in seagrass beds, creating a mixed habitat

that supports a higher diversity and abundance of invertebrate fauna by increasing heterogene-

ity or by improving habitat quality [16].

At high biomass, Gracilaria may be detrimental to both seagrasses and other organisms by

forming dense mats, which can decrease light availability for seagrasses and cause hypoxia or

anoxia [37, 49, 50]. Mats of Gracilaria may smother and kill the seagrass in which they are

entangled, leaving the alga without protection from tidal currents and waves that remove it

from the area, and thus cause a “habitat cascade” that is detrimental to fauna associated with

both seagrass and Gracilaria [16]. Additionally, “superblooms” of Gracilaria have been associ-

ated with Diopatra cuprea declines on intertidal mudflats [51]. While dense mats are common

in the seaside lagoons adjoining lower Chesapeake Bay [37], high densities of Gracilaria are

generally limited to areas with low water flow in tributaries within Chesapeake Bay [33]. There

is little evidence that Gracilaria is detrimental in Chesapeake Bay; therefore, it may be acting as

a nursery habitat in this non-native area.

Nursery habitats like seagrass beds, macroalgae, and marshes produce chemical signals that

cue megalopae (blue crab postlarvae) to the location of nursery habitats in lower Chesapeake

Bay [52, 53]. Megalopae ride nocturnal flood tide currents upstream towards nursery habitats

and rest near the bottom during ebb tides and daytime [54–56]. When megalopae reach nurs-

ery habitats, they metamorphose into the first benthic instar (J1) [57, 58]. Metamorphosis

from the megalopal stage to J1 (about 3 mm carapace width, CW) and settlement are acceler-

ated by cues from structured nursery habitats or lower salinities [53, 57, 59]. Juveniles typically

remain in these habitats until they reach about 20–30 mm CW, after which they emigrate to

unvegetated secondary nursery habitats like shallow mud coves [60, 61]. Structured habitats

provide refuge from predation as well as abundant prey resources for early juvenile crabs [27,

28, 61, 62]. Emigration from structured habitats may be due to a lack of suitable refuges or

food for larger juveniles [27, 28, 33, 61], or it may be density dependent [60, 63].

If Gracilaria is present in areas from which seagrasses have been extirpated due to environ-

mental change or where juvenile blue crab recruitment is higher than seagrasses can support,

it may represent an alternative, emerging primary or secondary nursery habitat in a novel eco-

system. Unfortunately, no data exist on the availability of Gracilaria and associated blue crab

densities in shallow habitats of lower Chesapeake Bay to provide field evidence for the proposi-

tion above and to complement a small-scale manipulative experiment [33]. Thus, the objec-

tives of this study were to determine (1) if Gracilaria is present in shallow habitats when

juvenile crabs are recruiting and where structured habitat is now absent, (2) how Gracilaria
abundance varies spatially or as a function of seagrass presence, and (3) if blue crabs are using
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Gracilaria as a nursery habitat, by quantifying the distribution and abundance of Gracilaria
and juvenile blue crabs in a mensurative experiment in the York River, a tributary of lower

Chesapeake Bay. We hypothesized that Gracilaria (1) could compensate for the loss of seagrass

nurseries in areas where seagrasses have declined or may be lost in the future due to environ-

mental stress, and (2) would be utilized by juvenile blue crabs as a structured nursery habitat.

Materials and methods

Study area

Studies were conducted in the York River in summer and early fall, 2013 and 2014. The study

sites extended from the mouth of the York River where it meets Chesapeake Bay to 42 km

upriver. The river was stratified along its salinity gradient into downriver, midriver, and

upriver regions (Fig 1a). Seagrass is currently present downriver, it was present historically

midriver but has since disappeared, and it does not occur nor has it occurred historically

upriver [64].

Environmental data including salinity, dissolved oxygen, and water temperature were

recorded once at each site using a YSI (Model 85, Yellow Spring Instruments), except for

Fig 1. Map of York River (a) seagrass beds (green) in 2013 (left) [65] and 2014 (right) [66] and sampling regions at

downriver (i), midriver (ii), and upriver (iii) sections along the river axis; (b) locations of all sites where Gracilaria
vermiculophylla was present (filled) or absent (open) in 2013 (left) and 2014 (right); (c)G. vermiculophylla biomass (g

dry weight m−2) at locations where it was present in 2013 (left) and 2014 (right); and (d) location of York River, a

western shore tributary of Chesapeake Bay.

https://doi.org/10.1371/journal.pone.0267880.g001
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salinity at 6 sites (2 upriver, 4 downriver) in March 2014. For these 6 sites, salinity was esti-

mated from the linear relationship between observed salinity and latitude and longitude dur-

ing the sampling period (y = 3820.1 + 33.9(latitude) − 32.6(longitude); r2 = 0.93). Monthly

mean salinity ranged from 19.6–20.6 downriver, 17.9–18.3 midriver, and 14.4–15.3 upriver.

The values for salinity are similar to those derived from a long-term monitoring program over

5 y; Downriver: 21.2 ± 0.4 SE; Midriver: 18.8 ± 0.9; Upriver: 14.7 ± 0.9 (http://data.

chesapeakebay.net/api.CSV/WaterQuality/WaterQuality/12–8-2016/12-8-2021/0,1/6/23/

HUC12/1456,1459,1460/83), where SE = Standard Error of the Mean. Monthly mean water

temperature ranged from 22.8–24.0˚C downriver, 23.0–24.5˚C midriver, and 24.9–25.0˚C

upriver. Hypoxic conditions (dissolved oxygen <2 mg L−1) were not observed at any sampling

sites over the study period (Table 1), in concordance with historical data for these shallow hab-

itats [67], and in contrast to deeper York River habitats where hypoxia occurs seasonally [68].

Large, continuous seagrass beds occur downriver and are dominated by eelgrass Zostera
marina with widgeon grass Ruppia maritima scattered throughout and unvegetated substrate

(mostly sand with some mud); both midriver and upriver are dominated by unvegetated sub-

strate, although seagrass beds were common midriver until 1972 [29]. Depths were estimated

using bathymetric data [69, 70]; all sites were located at<1.5 m depth below MLLW and ran-

ged from the low intertidal to shallow subtidal.

Mensurative experiment

The distribution and biomass of Gracilaria were quantified in the York River over two years,

from May to October in 2013 and 2014. Sites were selected using a stratified random sampling

design limited to shallow water areas (<1.5 m depth MLLW) with the three regions serving as

strata. In 2013, 10 sites were selected in each region each month. In 2014, each month 7–8 sites

were selected downriver and midriver, while only 4 sites were selected upriver due to its

absence there in 2013. In the downriver region, sites included those with and without seagrass

present.

At each site, three 20-m transects were set parallel to shore spaced at an interval of approxi-

mately 3 m relative to the shoreline. Transect depth ranged from approximately 0–2 m below

MLLW. Transects were marked every meter, at which the vegetation present was noted. Five

haphazard quadrats (0.0625 m2) were set along each transect. Within each quadrat, the percent

cover of any vegetation was recorded, and, if it was present, Gracilaria was removed from the

quadrat and its volume measured in a graduated cylinder to the nearest mL. Gracilaria volume

was converted to biomass (g dry weight, DW) using a linear regression (y = 0.138x; r2 = 0.998)

(S1 Fig).

Table 1. Summary of environmental data collected at sampled sites, including means of each variable during each sampling year; 95% confidence intervals are in

parentheses.

Downriver Midriver Upriver

2013 2014 2013 2014 2013 2014

Temperature (˚C) 24.7 24.0 24.6 24.5 25.2 24.9

(23.8, 25.5) (22.9, 25.2) (23.7, 25.4) (23.5, 25.5) (24.5, 25.9) (23.3, 26.4)

Salinity 19.4 20.6 17.6 17.8 14.4 14.7

(19.0, 19.9) (20.1, 21.1) (17.2, 18.1) (16.9, 18.8) (13.7, 15.0) (12.9, 16.4)

Dissolved Oxygen (mg/L) 8.1 8.0 7.0 7.8 7.0 7.5

(7.4, 8.9) (7.4, 8.5) (6.7, 7.4) (7.5, 8.1) (6.5, 7.5) (7.1, 7.9)

https://doi.org/10.1371/journal.pone.0267880.t001
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Juvenile crab density and size

Juvenile blue crab (Callinectes sapidus) density in seagrass and Gracilaria was assessed in June

and August 2013 in the downriver region (Fig 2). Sampling sites were haphazardly selected in

shallow subtidal locations at depths between 0.1 and 1.1 m MLLW. During each sampling

event, juvenile blue crabs were collected (n = 9–10 in each habitat) using the standard drop-

net suction method [24]. Drop nets (1.68 m2) were suctioned for 6 min each, and crab densities

were corrected for 78% efficiency. Seagrass beds were comprised predominantly of Zostera
marina with some Ruppia maritima. Seagrass and Gracilaria samples both ranged from 30–

100% cover.

Juvenile blue crabs were removed from all samples, counted, and measured to the nearest

0.1 mm using Vernier calipers. Crab densities were calculated for crabs<30 mm CW. Crabs

were then dried at 60˚C for at least 48 h before being combusted at 550˚C for 5 h to determine

ash-free dry weight (AFDW).

Analysis

Gracilaria presence, percent cover, and volume. Nine logistic regression models (g1–g9)

were developed to predict Gracilaria presence (Table 2), recorded as either 1 (present) or 0

(absent) at each site, as a function of base habitat (3 levels: downriver seagrass, downriver

sand, midriver sand), month (6 levels: May–October) and year (2 levels: 2013 and 2014). The

upriver treatment was eliminated from the analysis because Gracilaria never occurred upriver,

as was the midriver seagrass treatment because seagrass did not occur midriver. Each model

produced a log-likelihood value, which was then used to calculate Akaike’s Information Crite-

rion (AIC) [71]. AICc values were used to correct for bias due to low sample size [71]. From

these, Δi values and model probabilities (wi) were generated to compare the fit of the candidate

models (gi) with the model having the lowest AICc. A model was eliminated when wi< 0.10

[71]; the individual parameter estimates of the best model were then evaluated. The best model

was tested against other models, including the null and global models, with a Likelihood-Ratio

X2 test (LR test).

The same set of models was used for Gracilaria percent cover and biomass, and the best

model for these was the same as that for Gracilaria presence. Consequently, we only present

Fig 2. Map of crab sampling locations in June and August in the downriver area of the York River.

https://doi.org/10.1371/journal.pone.0267880.g002
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the final model’s parameter estimates for Gracilaria percent cover and biomass. We also evalu-

ated changes in percent cover and biomass by the magnitudes and confidence intervals of sam-

ple means over time and region. For these variables, we were primarily interested in whether

or not Gracilaria would occur in the midriver and downriver regions during the main settle-

ment and recruitment period from July through September, and to generate estimates of juve-

nile crab abundance using a combination of Gracilaria percent cover and the sampled crab

densities quantified below.

Juvenile crab density and size. Juvenile blue crab densities for crabs<30 mm CW were

analyzed using a Generalized Linear Model (GLM) with a log link and gamma family, due to

the heavy right-skewed distribution of crab density. Twelve models (g1–g12) were developed to

predict crab density as a function of habitat % cover, plant biomass, water depth, month and

habitat type (seagrass or Gracilaria) (Table 3), and analyzed as described above. Plant % cover

and plant biomass were not correlated (Pearson correlation test, p>>0.5) and could thus be

included together in models.

Results

Gracilaria and seagrass distribution

In both years, Gracilaria was present at more sites downriver than midriver and never present

upriver (Fig 1b). In the midriver zone, it was present primarily along the north shore of the

York River (Fig 1b) where it occurred as unattached drift algae, incorporated into worm tubes,

and less commonly, attached via holdfasts to shell fragments. Similarly, Gracilaria biomass was

highest downriver and midriver along the north shore (Fig 1c). In downriver samples, Graci-
laria typically occurred as unattached mats and less commonly integrated into worm tubes or

attached to shell fragments. In contrast, seagrass only occurred in the downriver zone (Fig 1a).

Gracilaria was present on average at 30.8% of sites in 2013 and at 30.3% of sites in 2014 (Fig 3).

Algal presence was greatest overall in June 2014 at 45% of sites, downriver in June and October

2014 (75%), and midriver in August 2013 (50%).

Of the 9 candidate models predicting presence (Table 2), model g7 had the highest wi,

although g1 deserved consideration because its wi value exceeded 0.1 (Table 2). Model g7 only

included base habitat, and the model fit was not improved by adding year in model g1 (LR test,

p = 0.32). The global model g8 did not improve the fit (LR test, p = 0.10), whereas model g7

improved the fit significantly over the null model g9 (LR test, p� 0.001).

Table 2. Information theoretic analysis [71] of 9 logistic regression models (gi) using base habitat (H), water

depth (D), month (M), and year (Y) as predictors of Gracilaria vermiculophylla presence, where k is the number

of parameters in a model, AIC is the Akaike information criterion, AICc is the corrected AIC, Δi is the difference

between any model and the best model in the set, and wi is the model probability. Models g8 and g9 are the global

model and null model, respectively.

Model k AIC AICc Δi wi

g1: Y + H 4 265.7 265.9 1.09 0.33

g2: M + H 8 269.2 269.9 5.04 <0.05

g3: Y + M + H 9 270.07 271.0 6.13 <0.05

g4: Y + M + H + D 10 271.8 272.9 8.06 <0.05

g5: Y�M + Y�H + M�H + D 27 274.5 282.7 17.88 <0.05

g6: Y�M + Y�H + D 17 271.3 274.4 9.59 <0.05

g7: H 3 264.7 264.8 0.00 0.58

g8: Y�M�H + D 37 287.7 303.8 39.0 <0.05

g9: mean 1 287.5 287.5 22.71 <0.05

https://doi.org/10.1371/journal.pone.0267880.t002
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Gracilaria presence in the York River was influenced by region and whether seagrass was

present (Table 4). Gracilaria presence (63.2%) was 2.3 × higher in downriver seagrass than in

downriver sand (42.5%) and 5.4 × higher than in midriver sand (24.0%) (Fig 4A). Gracilaria
presence in downriver sand was 2.3 × higher than that in midriver sand (Fig 4A). While there

was interannual variability in Gracilaria presence, with greater algal presence in 2013 than

2014 (Fig 3), it also varied by month but was present during the major blue crab recruitment

period from July through September.

The patterns of Gracilaria percent cover (Fig 5) and biomass (Fig 6) followed those of Gra-
cilaria presence (Fig 3). As with presence, Gracilaria percent cover and biomass were higher

downriver and in seagrass beds (Figs 5 and 6), although their magnitudes varied between years

as did presence. For instance, in 2013 during the July through September recruitment period,

Gracilaria percent cover averaged about 6% in downriver seagrass, 3% in downriver unvege-

tated bottom, and 1% in midriver unvegetated bottom. These values of percent cover may

seem low, but the areal extent of habitats where Gracilaria occurred was on the scale of 100s of

hectares.

As with presence and percent cover, algal biomass was greater in 2014 than 2013 (Fig 6a).

In 2013, there was a plateau of relatively higher biomass from July–October, whereas in 2014

biomass was highest from June–July. Within regions, algal biomass was greater downriver in

2014 than 2013 (Fig 6b), likely because salinity downriver was higher in 2014 than in 2013

(Table 1). Algal biomass was also greater midriver in 2013 than 2014 (Fig 6c). Downriver, bio-

mass was greatest in July 2014 (11.9 g DW m−2), and, while algal biomass was relatively stable

in 2013, it was variable in 2014. Midriver, algal biomass was greatest in October 2013 (3.9 g

DW m−2), and patterns of biomass were similar between years.

As for presence, the best-fitting models for percent cover (Table 5) and biomass (Table 6)

only included habitat. Gracilaria percent cover (3.52%) in downriver seagrass was twice that in

downriver sand (1.67%) and 3.4 × higher than in midriver sand (0.80%) (Fig 4B). Gracilaria
percent cover in downriver sand was twice that in midriver sand (Fig 4B). On average, Graci-
laria biomass (4.7 g DW m−2) was over 3 × higher in downriver seagrass than in downriver

sand (1.5 g DW m−2) and nearly 6 × higher than in midriver sand (0.8 g DW m−2) (Fig 4C).

Gracilaria biomass in downriver sand was almost twice as high as in midriver sand (Fig 4C).

Table 3. Information theoretic analysis [71] of 12 GLM models (gi) using habitat type (H), month (M), water

depth (D), plant % cover (C) and plant biomass (B) as predictors of juvenile blue crab density, where k is the num-

ber of parameters in a model, AIC is the Akaike information criterion, AICc is the corrected AIC, Δi is the differ-

ence between any model and the best model in the set, and wi is the model probability. Model g9 is the global model

and model g10 is the null model.

Model k AIC AICc Δi wi

g1: H + M 4 225.5 226.8 2.53 0.10

g2: H + M + C 5 222.3 224.2 0.00 0.34

g3: H + M + D 5 227.5 229.5 5.20 <0.01

g4: H + M + C + D 6 224.3 227.1 2.80 0.08

g5: H + M + C + B 6 221.9 224.7 0.45 0.27

g6: H + M + C + B + D 7 223.9 227.7 3.48 <0.01

g7: H�M + C 6 224.1 226.9 2.65 0.09

g8: H�M + C + D + B 8 225.6 230.7 6.45 <0.01

g9: H�C + M�C + D 8 227.2 232.3 8.09 <0.01

g10: H�B + M�B + D 8 228.0 233.2 8.93 <0.01

g11: H�C + M�C + H�B + M�B + H�D + M�D + D 14 233.1 252.2 27.95 <0.01

g12: mean 2 247.1 247.5 23.21 <0.01

https://doi.org/10.1371/journal.pone.0267880.t003
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Juvenile crab density and size

Of the 12 candidate models for density (Table 2), model g2 had the highest wi = 0.34, although

g5 deserved consideration because its wi = 0.27 exceeded 0.1 (Table 3). Model g2 included the

additive effects of plant % cover, habitat type and month; plant % cover and month were sig-

nificant, but habitat type (Gracilaria or seagrass) was not (Table 7). Model g5, which added

plant biomass as an extra parameter, was eliminated because it had a lower wi than g2, and did

not improve the fit even with one extra parameter (LR test, p = 0.17). The global model g11 also

Fig 3. Mean percent presence of Gracilaria vermiculophylla during 2013 and 2014 over: (a) the entire York River;(b) the downriver region, where base

habitats are seagrass (filled) and unvegetated (open); and (c) midriver region. Gracilaria was not observed upriver. Vertical bars represent 1 standard error

of the mean. Note differing scales on y-axes.

https://doi.org/10.1371/journal.pone.0267880.g003

Table 4. Summary of GLM for model g7 predicting presence, including parameter estimates (log-transformed),

standard errors, z values and p values. The intercept represents downriver seagrass. Model g7 explained 9.3% of the

null deviance.

Coefficients Estimate SE z p
Intercept 0.54 0.25 2.16 0.03

Downriver sand -0.84 0.41 -2.08 0.04

Midriver sand -1.69 0.34 -4.97 � 0.01

https://doi.org/10.1371/journal.pone.0267880.t004

PLOS ONE Non-native red alga compensates as blue crab nursery habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0267880 May 31, 2022 9 / 23

https://doi.org/10.1371/journal.pone.0267880.g003
https://doi.org/10.1371/journal.pone.0267880.t004
https://doi.org/10.1371/journal.pone.0267880


did not improve the fit over g2 (LR test, p = 0.85). In contrast, model g2 produced a signifi-

cantly better fit than the null model g12 (LR test, p� 0.001).

Juvenile crab density in 2013 was an exponentially increasing function of plant percent

cover (Fig 7); at 100% cover, crab density was nearly four-fold higher than crab density at 30%

Fig 4. Mean percent presence (A), percent cover (B) and biomass (C) of Gracilaria vermiculophylla in downriver

seagrass, downriver sand and midriver sand sites. Vertical bars represent 1 standard error of the mean.

https://doi.org/10.1371/journal.pone.0267880.g004
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cover (Fig 7B). Juvenile crab densities were also significantly greater, over four-fold, in August

than in June (Fig 7C) due to the influx of the 2013 cohort of new Age-0 recruits in July and

August. Although juvenile crab densities were slightly higher in seagrass than in Gracilaria
(Fig 7A and 7B), they did not differ significantly (Table 7).

In June 2013, juvenile blue crab size did not differ significantly between Gracilaria and sea-

grass (Table 8). These crabs represented the 2012 cohort that recruited from July through

November 2012 and which were captured in June 2013. In August, crab size was significantly

smaller by 13% in seagrass (7.9 vs. 9.1 mm CW, Table 8). In particular, juveniles from 2.5 to

4.0 mm CW (J1 and J2 benthic instar crabs) were 2.8 times more abundant in seagrass than in

Gracilaria (Fig 8).

Discussion

Gracilaria distribution and biomass patterns

Unlike previous studies [38, 72], salinity was associated with the distribution of Gracilaria ver-
miculophylla. Greatest abundance occurred at the higher salinities characterizing downriver

Fig 5. Mean Gracilaria vermiculophylla percent cover during 2013 and 2014 over: (a) the entire York River; (b) the downriver region, where base habitats

are seagrass (filled) and unvegetated (open); and (c) midriver region. Gracilaria vermiculophylla was not observed upriver. Vertical bars represent 1 standard

error of the mean. Note differing scales on y-axes.

https://doi.org/10.1371/journal.pone.0267880.g005
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and midriver regions of the York River. While the upriver region falls within the salinity toler-

ance and growth range of G. vermiculophylla (5–60) and other species of Gracilaria [73–77],

the alga has not yet colonized this region. In Sweden, Gracilaria expanded its range by about

150 km over two years [48], indicating that it is an efficient colonizer, so it is possible that the

alga has not colonized the upriver region due to physical constraints like currents or other

environmental factors. Sexual reproduction and spore release is uncommon in Gracilaria’s

non-native range [78]; therefore, the alga would likely spread farther upriver where the

Fig 6. Mean Gracilaria vermiculophylla biomass (g dry weight [DW] m−2) during 2013 and 2014 over: (a) the entire York River; (b) the downriver region,

where base habitats are seagrass (filled) and unvegetated (open); and (c) midriver region. Gracilaria vermiculophylla was not observed upriver. Vertical bars

represent 1 standard error of the mean. Note differing scales on y-axes.

https://doi.org/10.1371/journal.pone.0267880.g006

Table 5. Summary of GLM for model g7 predicting percent cover, including parameter estimates (log-trans-

formed), standard errors, z values and p values. The intercept represents downriver seagrass. Model g7 explained

12.9% of the null deviance.

Coefficients Estimate SE z p
Intercept 0.54 0.25 2.16 0.03

Downriver sand -0.84 0.41 -2.08 0.04

Midriver sand 12.69 0.34 -4.97 � 0.01

https://doi.org/10.1371/journal.pone.0267880.t005
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subtidal habitat is predominantly unvegetated via fragmentation or entanglement in fishing

gear or boat anchors.

Gracilaria was also more abundant where seagrass occurred. Seagrasses may create favor-

able conditions for the alga or have similar environmental requirements as Gracilaria. Because

seagrasses are only present in the downriver region of the York River where salinity is highest,

the presence of seagrass covaries with high salinity and, thus, may partially explain why salinity

was correlated with Gracilaria. However, Gracilaria presence and biomass were also greater

downriver than midriver at unvegetated sites, indicating that salinity or some other environ-

mental factor associated with salinity, may play a major role in the distribution of the alga. The

increased presence, biomass, and cover of the alga in areas with seagrass was likely due to the

propensity of the drifting algal fragments to become entangled in seagrass. In unvegetated

areas where there is little structure to encourage entanglement of drifting thalli or spore settle-

ment, the alga has a patchy distribution and large floating mats are rare. Typically, the alga is

found as drifting thalli or, more commonly, fragments may be incorporated into polychaete

tubes [10, 12].

The presence, biomass, and percent cover of Gracilaria varied over time, which is consistent

with a fast-growing alga that easily fragments. It is likely that differences in biomass between

years were due to differences in environmental variables like storm activity, temperature, salin-

ity, and nutrient inputs. For instance, intensified storm activity may increase the likelihood of

algal fragmentation, and winds may push these fragments into very shallow areas of low flow.

Fragments and mats may also be advected into deeper water and, due to the negative buoyancy

of the alga, be removed from the system. In the Baltic Sea, Gracilaria biomass increased 3-fold

over 2 y, while algal biomass increased by a factor of 18.5 in field experiments, indicating a

potentially large sink for algal biomass in deep water (>2 m depth) [76].

Interactions with native seagrasses

While Gracilaria presence and biomass covaried with seagrass presence, algal biomass in this

study was moderate and likely below the level at which negative impacts on seagrass occur

[79]. Negative effects of Gracilaria on seagrass may be exacerbated due to climate change and

other anthropogenic impacts. Increased sea surface temperatures and eutrophication will likely

cause reduced growth and increased mortality of seagrasses with concurrent increases in

growth rates of algal species [22, 80, 81]. In Chesapeake Bay, eelgrass Zostera marina is already

Table 6. Summary of GLM for model g7 predicting plant biomass, including parameter estimates, standard errors, z values and p values. The intercept represents

downriver seagrass. Model g7 explained 16.5% of the null deviance.

Coefficients Estimate SE t p
Intercept 1.55 0.06 27.76 � 0.01

Downriver sand -1.15 0.14 -8.17 � 0.01

Midriver sand -1.82 0.13 -14.53 � 0.01

https://doi.org/10.1371/journal.pone.0267880.t006

Table 7. Summary of GLM for model g2 predicting crab density, including parameter estimates, standard errors (SE), t values and p values. The intercept represents

August Gracilaria. Model g2 explained 52.2% of the null deviance.

Coefficients Estimate SE t p
Intercept 1.52 0.45 3.38 0.002

Plant % cover 0.017 0.006 2.64 0.012

Month = June -1.69 0.26 -6.43 <0.001

Habitat = seagrass 0.103 0.252 0.41 0.686

https://doi.org/10.1371/journal.pone.0267880.t007
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Fig 7. Juvenile crab density as a function of plant % cover, month, and habitat type using parameter estimates

from model g2 (Table 3). (A) Unadjusted crab densities with separate exponential fits to the raw data for August and

June. Note that the curves do not account for the effect of habitat type. (B) Crab densities as a function of habitat type

after accounting for the effect of month. (C) Crab densities as a function of month after accounting for the effect of

habitat type. Error bars = ± 1 SE.

https://doi.org/10.1371/journal.pone.0267880.g007
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experiencing periodic mass mortality events due to above average summer water temperatures

combined with other environmental stressors like increased turbidity [82]. Thus, Gracilaria
may increasingly impact seagrasses due to their interaction. For instance, Gracilaria tends to

exacerbate the negative effects of elevated temperature regimes (26–30˚C) on Z. marina, which

experiences decreased growth and increased mortality [83, 84]. In contrast, growth of Graci-
laria is positive over a range of temperatures (5–30˚C) with maximum growth from 15–25˚C

[73, 74, 77]; decreased growth and increased mortality only occur at temperatures exceeding

32.5˚C [74, 77].

Table 8. Mean juvenile crab size (<30 mm CW) in seagrass and Gracilaria vermiculophylla in June and August 2013, with standard error and 95% confidence

interval.

Habitat June August

Mean SE 95% CI n Mean SE 95% CI n

Seagrass 18.0 0.7 (16.6, 19.4) 10 7.9 0.2 (7.5, 8.3) 9

Gracilaria 17.8 0.9 (16.1, 19.5) 9 9.1 0.3 (8.6, 9.6) 9

https://doi.org/10.1371/journal.pone.0267880.t008

Fig 8. Juvenile blue crab size frequencies in seagrass and Gracilaria vermiculophylla in June (a and b, respectively) and August (c and d, respectively). Note

differing scales on y-axes.

https://doi.org/10.1371/journal.pone.0267880.g008
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Unlike eelgrass, widgeon grass Ruppia maritima is more tolerant of higher water tempera-

tures, such that growth increases with temperature from 8 to 30˚C [85], suggesting that this

species could potentially also compensate for eelgrass loss [86]. On the west coast of North

America, widgeon grass replaced eelgrass after a period of increased water temperature during

an El Niño event [87]. However, R. maritima is limited to shallower areas than Z. marina and

is more susceptible to physical disturbances like waves and storms [88], suggesting that it will

not replace eelgrass in all areas of Chesapeake Bay. Additionally, widgeon grass has not recolo-

nized areas midriver where seagrasses have been lost [64, 86], and where Gracilaria has

become the dominant subtidal vegetation. Differences in optimal growth conditions between

Z. marina and both R. maritima and G. vermiculophylla indicate that the shallow subtidal

structural habitat of lower Chesapeake Bay may shift from one dominated by eelgrass to one

dominated by algae and widgeon grass as sea surface temperatures increase with climate

change.

Implications for juvenile blue crabs

Small juvenile blue crabs use Gracilaria as a primary and early secondary nursery habitat [33].

Gracilaria is present in Chesapeake Bay shallow-water habitats where megalopae settle and

which juveniles colonize in late summer and fall [89]. The alga is also present in late spring

when crabs that recruited in late fall have overwintered and are still of a size (<30 mm CW)

that uses structured nursery habitats. However, variable algal biomass indicates that Gracilaria
may not represent a continuously stable nursery habitat, so juvenile blue crabs may use it

opportunistically when it is available, especially downriver and midriver where juvenile densi-

ties can be high [27] and density-dependent dispersal from nursery habitats is more probable

[58, 90].

Densities of juvenile blue crabs were similar in Gracilaria and seagrass in June and August,

supporting the hypothesis that the alga is used by young juvenile blue crabs as nursery habitat.

There were, however, almost 3 × as many small juvenile crabs (J1 and J2) in seagrass as com-

pared to algal habitat in August, shortly after recruitment, suggesting that megalopae preferen-

tially settle in seagrass rather than in the alga. Juvenile crab densities reported here are similar

to those observed previously in both seagrass and Gracilaria [33]. While our study and the pre-

vious study were conducted in the York River, the spatial distribution of vegetated samples

was broad in our study, thereby validating the conclusion of widespread distribution of Graci-
laria in the midriver and downriver sections of the York River. In addition, juvenile crab den-

sity positively correlated with percent cover of both Gracilaria and seagrass, similar to the

results of a previous study in Chesapeake Bay [91].

Gracilaria vermiculophylla is providing the only vegetated subtidal nursery habitat midriver

where seagrass has been extirpated (Fig 9). This change from unvegetated to vegetated sub-

strate adds structural complexity to these shallow subtidal areas and may represent an impor-

tant emerging nursery habitat for juvenile crabs in these lower salinity areas where megalopal

settlement and juvenile secondary dispersal rates can be high [32]. The estimates of Gracilaria
percent cover may seem low, but the areal extent of habitats where Gracilaria occurred was on

the scale of 100s of hectares. For example, a typical muddy cove system, where Gracilaria
occurred in the York River, encompasses approximately 40 ha, such that a downriver cove

with 6% Gracilaria percent cover would be equivalent to one of the four large 2.4-ha seagrass

beds near the mouth of the York River. Using crab densities quantified in this study, both a

cove system and a single seagrass bed could house about 200,000 juvenile crabs. Consequently,

the numerous midriver and downriver cove systems in the York River (Fig 9) could support
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Fig 9. Locations within the York River of (a) seagrass cover (green) in 1971 [92], (b) seagrass cover (green) in 2014

[66], and (c) sites where Gracilaria vermiculophylla was present in both 2013 and 2014.

https://doi.org/10.1371/journal.pone.0267880.g009
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millions of young juvenile blue crabs and thereby compensate for the loss of seagrass in the

river and in other areas of Chesapeake Bay.

Supporting information

S1 Fig. Relationship between Gracilaria vermiculophylla volume and biomass with linear

regression.
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